An Extended TOPSIS Method for the Multiple Attribute Decision Making Problems Based on Interval Neutrosophic Set

نویسندگان

  • Pingping Chi
  • Peide Liu
چکیده

The interval neutrosophic set (INS) can be easier to express the incomplete, indeterminate and inconsistent information, and TOPSIS is one of the most commonly used and effective method for multiple attribute decision making, however, in general, it can only process the attribute values with crisp numbers. In this paper, we have extended TOPSIS to INS, and with respect to the multiple attribute decision making problems in which the attribute weights are unknown and the attribute values take the form of INSs, we proposed an expanded TOPSIS method. Firstly, the definition of INS and the operational laws are given, and distance between INSs is defined. Then, the attribute weights are determined based on the Maximizing deviation method and an extended TOPSIS method is developed to rank the alternatives. Finally, an illustrative example is given to verify the developed approach and to demonstrate its practicality and effectiveness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Extended TOPSIS Method for Multiple Attribute Decision Making based on Interval Neutrosophic Uncertain Linguistic Variables

The interval neutrosophic uncertain linguistic variables can easily express the indeterminate and inconsistent information in real world, and TOPSIS is a very effective decision making method more and more extensive applications. In this paper, we will extend the TOPSIS method to deal with the interval neutrosophic uncertain linguistic information, and propose an extended TOPSIS method to solve...

متن کامل

An Extended TOPSIS Method for Multiple Attribute Decision Making based on Interval Neutrosophic Uncertainf updated

The interval neutrosophic uncertain linguistic variables can easily express the indeterminate and inconsistent information in real world, and TOPSIS is a very effective decision making method more and more extensive applications. In this paper, we will extend the TOPSIS method to deal with the interval neutrosophic uncertain linguistic information, and propose an extended TOPSIS method to solve...

متن کامل

Multiple attribute group decision making with linguistic variables and complete unknown weight information

Interval type-2 fuzzy sets, each of which is characterized by the footprint of uncertainty, are a very useful means to depict the linguistic information in the process of decision making. In this article, we investigate the group decision making problems in which all the linguistic information provided by the decision makers is expressed as interval type-2 fuzzy decision matrices where each of ...

متن کامل

Multiple attribute group decision making based on interval neutrosophic uncertain linguistic variables

To deal with decision-making problems with interval neutrosophic uncertain linguistic information, the paper proposes a multiple attribute group decision-making method under an interval neutrosophic uncertain linguistic environment. Firstly, the concept of an interval neutrosophic uncertain linguistic set and an interval neutrosophic uncertain linguistic variable (INULV) is presented by combini...

متن کامل

Rough Neutrosophic TOPSIS for Multi-Attribute Group Decision Making

This paper is devoted to present Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method for multi-attribute group decision making under rough neutrosophic environment. The concept of rough neutrosophic set is a powerful mathematical tool to deal with uncertainty, indeterminacy and inconsistency. In this paper, a new approach for multi-attribute group decision making prob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013